River Dynamics and Erosion

Steve Couture NHDES Rivers Coordinator

Presented to: Great Bay Siltation Commission December 1, 2008

http://des.nh.gov/organizati on/divisions/water/wmb/rive rs/documents/designated_ri vers.pdf

Fluvial Geomorphology

Geo=

Morphology =

Fluvial Geomorphology = The Interaction of Water and the Landscape through which it Works

Streams Are Dynamic

 Streams are dynamic systems that balance water flow and sediment transport

 A river's energy must be in balance with the size and volume of sediment carried by the river.

Sediment Load Transport Capacity

Source: Ontario Ministry of Natural Resources, 2001

Source: Ontario Ministry of Natural Resources, 2001

DEGRADATION OF STREAM CHANNEL + altered flow regime results in sediment deficit

Source: Ontario Ministry of Natural Resources, 2001

- When river channels are altered by humans or nature, the river must readjust to reach its former balance.
- Adjustments to Dimension, Profile and Pattern

Figure 3: Channel Evolution Model

From Schumm, Harvey, and Watson, 1984.

Warren Brook – NHDES Biomonitoring Station, Alstead

October 21, 2004

October 17, 2005

Channel pattern

Source: Rosgen, 1996

Understanding Erosion

Erosion is an ongoing natural process

 The rate of erosion is affected by soil type, slope, precipitation, and velocity

Erosion can be slowed but not stopped

When is Erosion a Problem?

- People forget that rivers are systems in dynamic equilibrium
- Structures are built too too close to eroding banks
- Riparian buffers aren't maintained
- Other natural or human activities accelerate the natural rate of erosion

Functions/Values of Healthy Streams

- Flood mitigation
- Water supply
- Water quality
- Sediment storage and transport
- Habitat
- Recreation
- Transportation
- Aesthetic qualities

Channel Equilibrium

Sediment Load

Transport Capacity

Lane (1955)

And...many streams are rapidly changing due to:

- Greater land development in susceptible areas
- •Channels are enlarging due to stormwater conveyance
- Potential global climate shifts or cycles
- Traditional river management don't support natural hydrology

Results..

High flows result in high erosive power kept in the channel,

instead of allowing the energy of the water to flow onto floodplain

Channel adjustments during high water events can have devastating economic consequences

NH Flooding: May 2006, April 2007 \$75.6 Million In Damages

Riverine Erosion Hazards - a National Concern

- 1/3 of the Nation's Streams Experience Severe Erosion (National Research Council, 1999)
- Catastrophic Erosion Costs \$595 Million/year (2008 dollars)

Cycle of Escalating Costs, Risks, and Ecosystem Degradation

Floods and Property Damage

Dredge, Berm and Armor

rmont ANR, River

How Can We Mitigate These Impacts?

Exeter River Geomorphic Assessment:Restoring and Maintaining Healthy River Conditions

Geomorphic Assessment

Inherent Sensitivity +

- Transport Capacity
- Bed and Bank Materials
- Sediment Supply

Adjustment Processes

- Reference Condition
- Major Adjustment
- Stream Type Departure

Fluvial Erosion Hazard Planning

Based on identification of degree & likelihood of fluvial

adjustments; assigns a corresponding level of risk to infrastructure & property within the river corridor

FEH Corridors based on Erosion Hazard Ratings and Belt width

FEH Rating	Belt Widths
Very Low (VL)	Reference channel width
Low (LW)	Reference channel width
Moderate (MD)	Four (4) channel widths
High (HI)	Six (6) channel widths
Very High (VH)	Six (6) channel widths
Extreme (EX)	Six (6) channel widths

Breaking the Cycle Through FEH-based Corridor Protection

- Avoids Land Use Constraints Which Prevent Maintenance or Achievement of the Equilibrium Condition
- Provides Low Cost Solution
- Enhances Public Safety
- Minimizes Economic Losses
- Manages towards Sustainable Healthy Stream Conditions

NH Support for FEH:

- NH Hazard Mitigation Plan (DOS,2007)
 http://www.nh.gov/safety/divisions/bem/HazardMitigation/haz mit plan.html
- Independent Evaluation of Recent Flooding in New Hampshire. FEMA July 2008. http://des.nh.gov/organization/divisions/water/dam/documents/flood-report-nh-flooding-analysis.pdf
- Comprehensive Flood Management Study Commission, New Hampshire House Bill 648 (Chapter 179 Laws of 2007), Final Report, September 2008. http://gencourt.state.nh.us/statstudcomm/reports/1853.pdf
- LSR 2009-H-0207-R authorizing fluvial erosion hazard zoning

Sponsors: Prime –Rep. Gene Andersen

NH FEH Applicability to Great Bay:

- Chesepeake Bay Approach
 - Watershed-management plans that address the protection, conservation, and restoration of stream corridors, riparian forest buffers, & wetlands would be developed to meet the proposed goals.

(USGS, Water-Resources Investigations Report 03-4123)

Regional Supporting Data for Floodplain Restoration

- Black Creek Floodplain Restoration (Bakersfield & Fairfield, VT)
- 200 acres of reconnected Floodplain
- Year 1 Data
 - 950 cubic yards of sediment
 - 1.1 tons of phosphorus(VTDEC, Unpublished 2008)

Questions?